Student number:

Name:

Please write your name and student number on top of each sheet that you hand in.

You get 10 points for participating.

Good luck!

- 1. Define $f: \mathbb{C} \to \mathbb{C}$ by $f(x+iy) = (x+e^x \cos y) + i(e^x \sin y y)$ for all $x, y \in \mathbb{R}$.
 - (a) (10 pts) Determine the set of all points in \mathbb{C} at which f is complex differentiable.
 - (b) (10 pts) Compute the line integral $\int_L f(z) dz$ where L is the line segment from 0 to $i\pi$ in \mathbb{C} .
- 2. (15 pts) Let C denote the circle |z|=3 oriented counterclockwise. Compute the integral

$$\int_C \frac{\sin(z^2)}{z^3(z-1)} \, dz.$$

- 3. (15 pts) Use Rouché's theorem to to determine the number of zeros, counting with multiplicities, of the polynomial $z^4 2z^3 + 9z^2 + z 1$ inside the disk |z| < 2.
- 4. (15 pts) Suppose f and g are entire functions and D is a compact subset of \mathbb{C} . Show that |f(z)| + |g(z)|, for $z \in D$ takes its maximum value on the boundary of D. (Suggestion: Consider $f(z)e^{i\alpha} + g(z)e^{i\beta}$ for appropriate α and β .)
- 5. (a) (10 pts) Let C_R denote the half circle $\{z: |z|=R, \operatorname{Im}(z)\geq 0\}$. Prove that

$$\lim_{R \to \infty} \int_{C_R} \frac{e^{iz}}{z^2 + 1} \, dz = 0$$

(b) (15 pts) Using complex residues and part (a), compute the (real valued) integral

$$\int_{-\infty}^{\infty} \frac{\cos x}{x^2 + 1} \, dx.$$